Article... เรื่องคลื่นแม่เหล็กไฟฟ้า
บทความ เรื่องคลื่นแม่เหล็กไฟฟ้า
คลื่นแม่เหล็กไฟฟ้า (Electromagnetic Radiation (EM radiation หรือ EMR)) เป็นคลื่นชนิดหนึ่งที่ไม่ต้องใช้ตัวกลางในการเคลื่อนที่ เช่น คลื่นวิทยุ (Radio waves) คลื่นไมโครเวฟ(Microwaves)
ปัจจุบันมีการใช้คลื่นแม่เหล็กไฟฟ้าในหลาย ๆ ด้าน เช่น การติดต่อสื่อสาร (มือถือ โทรทัศน์ วิทยุ เรดาร์ ใยแก้วนำแสง) ทางการแพทย์ (รังสีเอกซ์) การทำอาหาร (คลื่นไมโครเวฟ) การควบคุมรีโมท (รังสีอินฟราเรด)
คุณสมบัติของคลื่นแม่เหล็กไฟฟ้าคือเป็นคลื่นที่เกิดจากคลื่นไฟฟ้าและคลื่นแม่เหล็กตั้งฉากกันและเคลื่อนที่ไปยังทิศทางเดียวกัน คลื่นแม่เหล็กไฟฟ้าสามารถเดินทางได้ด้วยความเร็ว 299,792,458 เมตร/วินาที หรือเทียบเท่ากับความเร็วแสง
คลื่นแม่เหล็กไฟฟ้า เกิดจากการรบกวนทางแม่เหล็กไฟฟ้า (Electromagnetic disturbance) โดยการทำให้สนามไฟฟ้าหรือสนามแม่เหล็กมีการเปลี่ยนแปลง เมื่อสนามไฟฟ้ามีการเปลี่ยนแปลงจะเหนี่ยวนำให้เกิดสนามแม่เหล็ก หรือถ้าสนามแม่เหล็กมีการเปลี่ยนแปลงก็จะเหนี่ยวนำให้เกิดสนามไฟฟ้า
คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นตามขวาง ประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็กที่มีการสั่นในแนวตั้งฉากกัน และอยู่บนระนาบตั้งฉากกับทิศการเคลื่อนที่ของคลื่น คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่เคลื่อนที่โดยไม่อาศัยตัวกลาง จึงสามารถเคลื่อนที่ในสุญญากาศได้
สเปกตรัม (Spectrum) ของคลื่นแม่เหล็กไฟฟ้าจะประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นแตกต่างกัน ซึ่งครอบคลุมตั้งแต่ คลื่นแสงที่ตามองเห็น อัลตราไวโอเลต อินฟราเรด คลื่นวิทยุ โทรทัศน์ ไมโครเวฟ รังสีเอกซ์ รังสีแกมมา เป็นต้น ดังนั้นคลื่นแม่เหล็กไฟฟ้า จึงมีประโยชน์มากในการสื่อสารและโทรคมนาคม และทางการแพทย์
ฟิสิกส์
ทฤษฎี
คลื่นแม่เหล็กไฟฟ้า (Electromagnetic Radiation) คลื่นแม่เหล็กไฟฟ้าเป็นรูปแบบหนึ่งการถ่ายเทพลังงาน จากแหล่งที่มีพลังงานสูงแผ่รังสีออกไปรอบๆ โดยมีคุณสมบัติที่เกี่ยวข้องกับคลื่นแม่เหล็กไฟฟ้า คือ ความยาวคลื่น (l) โดยอาจวัดเป็น nanometer (nm) หรือ micrometer (mm) และ ความถี่คลื่น (f) ซึ่งจะวัดเป็น hertz (Hz) โดยคุณสมบัติทั้งสองมีความสัมพันธ์ผ่านค่าความเร็วแสง ในรูป c = fl พลังงานของคลื่น พิจารณาเป็นความเข้มของกำลังงาน หรือฟลักซ์ของการแผ่รังสี (มีหน่วยเป็น พลังงานต่อหน่วยเวลาต่อหน่วยพื้นที่ = Joule s-1 m-2 = watt m-2) ซึ่งอาจวัดจากความเข้มที่เปล่งออกมา (radiance) หรือความเข้มที่ตกกระทบ (irradiance)
[1] สเปกตรัม (Spectrum) ของคลื่นแม่เหล็กไฟฟ้าจะประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นแตกต่างกัน ซึ่งครอบคลุมตั้งแต่ คลื่นแสงที่ตามองเห็น อัลตราไวโอเลต อินฟราเรด คลื่นวิทยุ โทรทัศน์ ไมโครเวฟ รังสีเอกซ์ รังสีแกมมา เป็นต้น ดังนั้นคลื่นแม่เหล็กไฟฟ้า จึงมีประโยชน์มากในการสื่อสารและโทรคมนาคม และทางการแพทย์
สมการแมกซ์เวลล์สำหรับสนามแม่เหล็กไฟฟ้าที่ห่างไกลจากแหล่งกำเนิด
เจมส์ เคลิร์ก แมกซ์เวลล์ (James Clerk Maxwell) ได้เป็นผู้ที่ตั้งสมมติฐานคลื่นแม่เหล็กไฟฟ้าอย่างเป็นทางการเป็นครั้งแรก เหล่านี้ได้รับการยืนยันภายหลังต่อมาโดย ไฮน์ริช เฮิร์ตซ์ (Heinrich Hertz)
สมบัติของคลื่นแม่เหล็กไฟฟ้า
- ไม่ต้องใช้ตัวกลางในการเคลื่อนที่ (บางชนิด)
- อัตราเร็วของคลื่นแม่เหล็กไฟฟ้าทุกชนิดในสุญญากาศเท่ากับ 299,792,458 เมตร/วินาที ซึ่งเท่ากับ อัตราเร็วของแสง
- เป็นคลื่นตามขวาง
- ถ่ายเทพลังงานจากที่หนึ่งไปอีกที่หนึ่ง
- ถูกปล่อยออกมาและถูกดูดกลืนได้โดยสสาร
- ไม่มีประจุไฟฟ้า
- คลื่นสามารถแทรกสอด สะท้อน หักเห และเลี้ยวเบนได้
[2]==สเปกตรัมคลื่นแม่เหล็กไฟฟ้า==
- คลื่นวิทยุ คลื่นวิทยุมีความถี่ช่วง 104 - 109 Hz( เฮิรตซ์ ) ใช้ในการสื่อสาร คลื่นวิทยุมีการส่งสัญญาณ 2 ระบบคือ
1.1 ระบบเอเอ็ม (A.M. = amplitude modulation)
ระบบเอเอ็ม มีช่วงความถี่ 530 - 1600 kHz( กิโลเฮิรตซ์ ) สื่อสารโดยใช้คลื่นเสียงผสมเข้าไปกับคลื่นวิทยุเรียกว่า "คลื่นพาหะ" โดยแอมพลิจูดของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง ในการส่งคลื่นระบบ A.M. สามารถส่งคลื่นได้ทั้งคลื่นดินเป็นคลื่นที่เคลื่อนที่ในแนวเส้นตรงขนานกับผิวโลกและค ลื่นฟ้าโดยคลื่นจะไปสะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แล้วสะท้อนกลับลงมา จึงไม่ต้องใช้สายอากาศตั้งสูงรับ
1.2 ระบบเอฟเอ็ม (F.M. = frequency modulation)
ระบบเอฟเอ็ม มีช่วงความถี่ 88 - 108 MHz (เมกะเฮิรตซ์) สื่อสารโดยใช้คลื่นเสียงผสมเข้ากับคลื่นพาหะ โดยความถี่ของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง ในการส่งคลื่นระบบ F.M. ส่งคลื่นได้เฉพาะคลื่นดินอย่างเดียว ถ้าต้องการส่งให้คลุมพื้นที่ต้องมีสถานีถ่ายทอดและเครื่องรับต้องตั้งเสาอากาศสูง ๆ รับ
2. คลื่นโทรทัศน์และไมโครเวฟ คลื่นโทรทัศน์และไมโครเวฟมีความถี่ช่วง 108 - 1012 Hz มีประโยชน์ในการสื่อสาร แต่จะไม่สะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก ในการถ่ายทอดสัญญาณโทรทัศน์จะต้องมีสถานีถ่ายทอดเป็นระยะ ๆ เพราะสัญญาณเดินทางเป็นเส้นตรง และผิวโลกมีความโค้ง ดังนั้นสัญญาณจึงไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตรบนผิวโลก อาจใช้ไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียม แล้วให้ดาวเทียมนำสัญญาณส่งต่อไปยังสถานีรับที่อยู่ไกล ๆ เนื่องจากไมโครเวฟจะสะท้อนกับผิวโลหะได้ดี จึงนำไปใช้ประโยชน์ในการตรวจหาตำแหน่งของอากาศยาน เรียกอุปกรณ์ดังกล่าวว่า เรดาร์ โดยส่งสัญญาณไมโครเวฟออกไปกระทบอากาศยาน และรับคลื่นที่สะท้อนกลับจากอากาศยาน ทำให้ทราบระยะห่างระหว่างอากาศยานกับแหล่งส่งสัญญาณไมโครเวฟได้
3. รังสีอินฟาเรด (infrared rays) รังสีอินฟาเรดมีช่วงความถี่ 1011 - 1014 Hz หรือความยาวคลื่นตั้งแต่ 10-3 - 10-6 เมตร ซึ่งมีช่วงความถี่คาบเกี่ยวกับไมโครเวฟ รังสีอินฟาเรดสามารถใช้กับฟิล์มถ่ายรูปบางชนิดได้ และใช้เป็นการควบคุมระยะไกลหรือรีโมทคอนโทรลกับเครื่องรับโทรทัศน์ได้
4. แสง (light) แสงมีช่วงความถี่ 1014Hz หรือความยาวคลื่น 4x10-7 - 7x10-7 เมตร เป็นคลื่นแม่เหล็กไฟฟ้าที่ประสาทตาของมนุษย์รับได้
5. รังสีอัลตราไวโอเลต (Ultraviolet rays) รังสีอัลตราไวโอเลต หรือ รังสีเหนือม่วง มีความถี่ช่วง 1015 - 1018 Hz เป็นรังสีตามธรรมชาติส่วนใหญ่มาจากการแผ่รังสีของดวงอาทิตย์ ซึ่งทำให้เกิดประจุอิสระและไอออนในบรรยากาศชั้นไอโอโนสเฟียร์ รังสีอัลตราไวโอเลต
6. รังสีเอกซ์ (X-rays)รังสีเอกซ์ มีความถี่ช่วง 1016 - 1022 Hz มีความยาวคลื่นระหว่าง 10-8 - 10-13 เมตร ซึ่งสามารถทะลุสิ่งกีดขวางหนาๆ ได้หลักการสร้างรังสีเอกซ์คือ การเปลี่ยนความเร็วของอิเล็กตรอน มีประโยชน์ทางการแพทย์ในการตรวจดูความผิดปกติของอวัยวะภายในร่างกาย
7. รังสีแกมมา (Gamma-rays) รังสีแกมมามีสภาพเป็นกลางทางไฟฟ้ามีความถี่สูงกว่ารังสีเอกซ์ เป็นคลื่นแม่เหล็กไฟฟ้าที่เกิดจากปฏิกิริยานิวเคลียร์และสามารถกระตุ้นปฏิกิริยานิวเคลียร์ได้
[3]===ข้อมูลต่างๆเพิ่มเติม===
1. คลื่นวิทยุ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่งที่เกิดขึ้นในช่วงความถี่วิทยุบนเส้นสเปกตรัมแม่เหล็กไฟฟ้า คลื่นวิทยุไม่ต้องอาศัยตัวกลางในการเคลื่อนที่ ใช้ในการสื่อสารมี 2 ระบบคือ A.M. และ F.M. ความถี่ของคลื่น หมายถึง จำนวนรอบของการเปลี่ยนแปลงของคลื่น ในเวลา 1 วินาที คลื่นเสียงมีความถี่ช่วงที่หูของคนรับฟังได้ คือ ตั้งแต่เริ่มมี คลื่นวิทยุแต่ละช่วงความถี่จะถูกกำหนดให้ใช้งานด้านต่างๆ ตามความเหมาะสม
ส่วนประกอบของคลื่น 1. สันคลื่น (Crest) ตำแหน่งสูงสุดของคลื่น หรือเป็นตำแหน่งที่มีการกระจัดสูงสุดในทางบวก 2. ท้องคลื่น (Trough) ตำแหน่งต่ำสุดของคลื่น หรือเป็นตำแหน่งที่มีการกระจัดสูงสุดในทางลบ 3. แอมพลิจูด (Amplitude) เป็นระยะการกระจัดมากสุด ทั้งค่าบวกและค่าลบ 4. ความยาวคลื่น (wavelength) เป็นความยาวของคลื่นหนึ่งลูกมีค่าเท่ากับระยะระหว่างสันคลื่นหรือท้องคลื่นที่อยู่ถัดกัน ความยาวคลื่นแทนด้วยสัญลักษณ์ มีหน่วยเป็นเมตร (m) 5. ความถี่ (frequency) หมายถึง เวลาที่ตำแหน่งใด ๆ ในหนึ่งหน่วยเวลา แทนด้วยสัญลักษณ์ มีหน่วยเป็นรอบต่อวินาที (s-1) หรือ เฮิรตซ์ (Hz) 6. คาบ (period) หมายถึง เวลา่ที่คลื่นเคลื่อนที่ผ่านตำแหน่งใด ๆ ครบหนึ่งลูกคลื่น แทนด้วยสัญลักษณ์ มีหน่วยเป็นวินาทีต่อรอบ (s) 7. อัตราเร็วของคลื่น (wave speed) หาได้จากผลคูณระหว่างความยาวคลื่นและความถี่
การรับคลื่นวิทยุ 1. วิทยุจะแยกเอาสัญญาณคลื่นเสียงออกจากคลื่นพาหะ 2. แล้วขยายสัญญาณเสียงให้มีพลังงานมากขึ้น ส่งเข้าสู่ลำโพงเสียง
นิโคลา เทสลา และกูลเยลโม มาร์โกนี ได้รับการยกย่องว่าเป็นผู้ประดิษฐ์ระบบที่นำคลื่นวิทยุมาใช้ในการสื่อสาร[1][2] [3]
ชื่อแถบความถี่ ความถี่ การใช้งานในประเทศไทย
- Very Low Frequency(VLF) 3-30 KHz (K=1พัน)
- Low Frequency (LF) 30-300 KHz
- Medium Frequency (MF) 300-3,000 KHz วิทยุ AM คลื่น MW
- High Frequency (HF) 3,000-30,000 KHz วิทยุ AM คลื่นสั้น (SW)
- Very thigh Frequency (VHF) 30-300 MHz (M=1ล้าน) วิทยุ FM และโทรทัศน์ช่อง2-12
- Ultra High Frequency (UHF) 300-3,000 MHz โทรทัศน์ช่อง 14-69
- Super High Frequency (SHF) 3-30 GHz (G=พันล้าน) สัญญาณผ่านดาวเทียม
- Extremdy High Frequency (EHF) 30-300 GHz -
การเรียกขนาดของความถี่ บางครั้งอาจเรียกตามความยาวคลื่น ซึ่งหาได้จากความเร็วคลื่นหารด้วยความถี่ เช่น คลื่นวิทยุ FM ความถี่ 100 MHz ความยาวคลื่นจึงเท่ากับ 3 เมตร การทราบขนาดความยาวคลื่นมีประโยชน์สำหรับการเลือกรับคลื่นวิทยุต่างๆ เนื่องจากบางครั้งจะเรียกคลื่นวิทยุตามความยาวคลื่น นอกจากนี้ยังมีประโยชน์สำหรับการเลือกใช้ขนาดแผงสายอากาศที่เหมาะสม ซึ่งโดยทั่วไป แผงสายอากาศจะใช้ขนาดประมาณ 1 ใน 4 ของความยาวคลื่น
วิทยุเอเอ็มและเอฟเอ็ม หมายถึงระบบการผสมคลื่นเสียงเข้ากับคลื่นวิทยุซึ่งทำได้ 2 วิธีคือ
1.ระบบเอเอ็ม (AM) หมายถึงระบบการผสมคลื่นที่เมื่อผสมกันแล้วทำให้ความสูงของคลื่นวิทยุเปลี่ยนแปลงไปตามคลื่นเสียง จึงเรียกว่าการผสมทางความสูงของคลื่น (Amplitude Modulation) หรือ AM วิทยุ AM ให้คุณภาพของเสียงไม่ดีนัก เพราะเกิดการรบกวน ได้ง่าย เช่น ถูกรบกวนจากสถานีข้างเคียง เครื่องใช้ไฟฟ้า และที่สำคัญคือการรบกวนจากธรรมชาติ ได้แก่ เวลาฝนตก ฟ้าแลบ ฟ้าผ่า สภาพอากาศที่แปรปรวนมากๆ จะทำให้เสียงขาดหายเป็นช่วงๆ การส่งวิทยุ AM แบ่งความถี่การใช้งานออกเป็นช่วงคลื่น (Band) ต่างๆ ดังนี้
1.1 LW (Long wave) ความถี่ 30 -300 KHz
1.2 MW (Medium Wave) ความถี่ 535 -1605 KHz เป็นความถี่ของวิทยุ AM ส่วนใหญ่ที่ใช้ในประเทศไทย จำนวนกว่า 200 สถานี กระจายอยู่ทั่วประเทศ โดยทั่วไปส่งได้ไกลประมาณ 200 กิโลเมตร
1.3 SW (Shot Wave) ความถี่ 3 -30 MHz คุณภาพเสียงไม่ดี แต่ส่งไปได้ไกลมากนับพันกิโลเมตร จึงสามารถส่งกระจายเสียงได้ถึงข้ามทวีป เช่น สถานีวิทยุกระจายเสียงแห่งประเทศไทย (Radio Thailand) 11.965 MHz และ 9.0655 MHz สถานี BBC ความถี่ที่รับได้ในประเทศไทย 11.910 MHz สถานีวิทยุเสียงอเมริกา หรือ (Voice of America) ความถี่ 11.780 MHz สถานีวิทยุของออสเตเลีย (Radio Australia) ความถี่ 15.40 MHz Radio Japan ความถี่ 15.235 MHz (ยุทธนา สาริยา 2527 : 18)
2.ระบบ เอฟเอ็ม (FM) เป็นการผสมคลื่นทางความถี่ (Frequency Modulation) คือคลื่นวิทยุที่ผสมกับคลื่นเสียงแล้ว จะมีความถี่ไม่สม่ำเสมอ เปลี่ยนแปลงไปตามคลื่นเสียง แต่ความสูงของคลื่นยังคงเดิม วิทยุ FM ส่งด้วยความถี่ 88 -108 MHz ในประเทศไทยมีจำนวนกว่า 100 สถานี กระจายอยู่ตามจังหวัดต่างๆ ทั่วประเทศ ให้คุณภาพเสียงดีเยี่ยม ไม่เกิดสัญญาณรบกวนจากสภาพอากาศแปรปรวน แต่ส่งได้ในระยะประมาณไม่เกินประมาณ 150 กิโลเมตร ปัจจุบันนิยมส่งในแบบ สเตอริโอ ที่เรียกว่าระบบ FM Sterio Multiplex ซึ่งเครื่องรับวิทยุสามารถแยกสัญญาณแอกเป็น 2 ข้าง คือ สัญญาณสำหรับลำโพงด้านซ้าย (L) และ สัญญาณสำหรับลำโพงขวา (R)
2 คลื่นโทรทัศน์และไมโครเวฟ
คลื่นโทรทัศน์มีความถี่ประมาณ
เฮิรตซ์ คลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูงขนาดนี้จะไม่สะท้อนที่ชั้นไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก ดังนั้นในการส่งคลื่นโทรทัศน์ไปไกลๆ จะต้องใช้สถานีถ่ายทอดคลื่นเป็นระยะๆ เพื่อรับคลื่นโทรทัศน์จากสถานีส่งซึ่งมาในแนวเส้นตรง แล้วขยายให้สัญญาณแรงขึ้นก่อนที่จะส่งไปยังสถานีที่อยู่ถัดไป เพราะสัญญาณเดินทางเป็นเส้นตรง ดังนั้นสัญญาณจะไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตร บนผิวโลกเท่านั้น ทั้งนี้เพราะผิวโลกโค้ง หรืออาจใช้คลื่นไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียมซึ่งโคจรอยู่ในวงโคจรที่ตำแหน่งหยุดนิ่งเมื่อเทียบกับตำแหน่งหนึ่งๆ บนผิวโลก นั่นคือดาวเทียมมีความเร็วเชิงมุมเดียวกับความเร็วในการหมุนรอบตัวเองของโลก จากนั้นดาวเดทียมจะส่งคลื่นต่อไปยังสถานีรับที่อยู่ไกลๆได้
เฮิรตซ์ คลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูงขนาดนี้จะไม่สะท้อนที่ชั้นไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก ดังนั้นในการส่งคลื่นโทรทัศน์ไปไกลๆ จะต้องใช้สถานีถ่ายทอดคลื่นเป็นระยะๆ เพื่อรับคลื่นโทรทัศน์จากสถานีส่งซึ่งมาในแนวเส้นตรง แล้วขยายให้สัญญาณแรงขึ้นก่อนที่จะส่งไปยังสถานีที่อยู่ถัดไป เพราะสัญญาณเดินทางเป็นเส้นตรง ดังนั้นสัญญาณจะไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตร บนผิวโลกเท่านั้น ทั้งนี้เพราะผิวโลกโค้ง หรืออาจใช้คลื่นไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียมซึ่งโคจรอยู่ในวงโคจรที่ตำแหน่งหยุดนิ่งเมื่อเทียบกับตำแหน่งหนึ่งๆ บนผิวโลก นั่นคือดาวเทียมมีความเร็วเชิงมุมเดียวกับความเร็วในการหมุนรอบตัวเองของโลก จากนั้นดาวเดทียมจะส่งคลื่นต่อไปยังสถานีรับที่อยู่ไกลๆได้
ก. การใช้สถานีถ่ายทอดเป็นระยะ

ข. การถ่ายทอดผ่านดาวเทียม
เพราะคลื่นโทรทัศน์ที่มีความยาวคลื่นสั้น ไม่สามารถเลี้ยวเบนอ้อมผ่านสิ่งกีดขวางขนาดใหญ่ได้ ดังนั้นเมื่อคลื่นโทรทัศน์กระทบรถยนต์หรือเครื่องบิน จะเกิดปรากฏการณ์แทรกสอดกับคลื่นที่ส่งมาจากสถานีแล้วเข้ากับเครื่องรับสัญญาณพร้อมกัน ทำให้เกิดภาพซ้อนในจอภาพ ฉะนั้นเพื่อให้ได้ภาพคมชัดเจน ปัจจุบันจึงนิยมใช้ระบบส่งสัญญาณโทรทัศน์ตามสาย
ไมโครเวฟ (microwave) เป็นคลื่นความถี่วิทยุชนิดหนึ่งที่มีความถี่อยู่ระหว่าง 0.3GHz - 300GHz ส่วนในการใช้งานนั้นส่วนมากนิยมใช้ความถี่ระหว่าง 1GHz - 60GHz เพราะเป็นย่านความถี่ที่สามารถผลิตขึ้นได้ด้วยอุปกรณ์อิเล็กทรอนิกส์
3. รังสีอินฟราเรด
รังสีอินฟราเรด (อังกฤษ: Infrared (IR)) มีชื่อเรียกอีกชื่อว่า รังสีใต้แดง หรือรังสีความร้อน เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นอยู่ระหว่างคลื่นวิทยุและแสงมีความถี่ในช่วง 1011 – 1014 เฮิร์ตซ์หรือความยาวคลื่นตั้งแต่ 1-1000 ไมโครเมตร มีความถี่ในช่วงเดียวกับไมโครเวฟ มีความยาวคลื่นอยู่ระหว่างแสงสีแดงกับคลื่นวิทยุสสารทุกชนิดที่มีอุณหภูมิอยู่ระหว่าง -200 องศาเซลเซียสถึง 4,000 องศาเซลเซียส จะปล่อยรังสีอินฟราเรดออกมา คุณสมบัติเฉพาะตัวของรังสีอินฟราเรด เช่น ไม่เบี่ยงเบนในสนามแม่เหล็กไฟฟ้า ที่แตกต่างกันก็คือ คุณสมบัติที่ขึ้นอยู่กับความถี่ คือยิ่งความถี่สูงมากขึ้น พลังงานก็สูงขึ้นด้วย
ถูกค้นพบโดยนักวิทยาศาสตร์ชาวอังกฤษ คือ Sir William Herschel ซึ่งได้ค้นพบ รังสีอินฟราเรดสเปกตรัมในปี ค.ศ. 1800จากการทดลองโดยทดสอบว่าในเลนส์แต่ละสี จะเปลี่ยนค่าแสดงความร้อนของดวงอาทิตย์หรือไม่ จึงประดิษฐ์อุปกรณ์การทดลองเพื่อหาคำตอบใช้ปริซึมแยกแสง แล้วให้แสงต่างๆมาตกที่เทอร์โมมิเตอร์ก็ตั้งเทอร์โมมิเตอร์ตัวหนึ่งนอกเหนือจากแสงสีต่าง ๆ นั้น เพื่อเป็นตัวควบคุมการทดลอง ปรากฏว่า แสงสีต่าง มีอุณหภูมิสูงกว่าแสงสีขาว และอุณหภูมิสูงขึ้นจาก สีม่วง ไปหาสีแดง ปรากฏว่า เทอร์โมมิเตอร์ ตัวที่อยู่นอกเหนือจากแสงสีแดงนั้น กลับวัดได้อุณหภูมิสูงกว่าทุกตัว พบว่า ส่วนของแสงที่มองไม่เห็นแต่ร้อนกว่าสีแดงนี้ มีคุณสมบัติทางกายภาพเช่นเดียวกับคลื่นแสงที่มองเห็นได้ทุกประการ เช่น การหักเห ดูดซับ ส่องผ่านหรือไม่ผ่านตัวกลาง รังสีที่ถูกค้นพบใหม่นี้ตั้งชื่อว่า " รังสีอินฟราเรด " (ขอบเขตที่ต่ำกว่าแถบสีแดงหรือรังสีใต้แดง)
4 แสง
แสง (อังกฤษ: light) เป็นการแผ่รังสีแม่เหล็กไฟฟ้าในบางส่วนของสเปกตรัมแม่เหล็กไฟฟ้า คำนี้ปกติหมายถึง แสงที่มองเห็นได้ ซึ่งตามนุษย์มองเห็นได้และทำให้เกิดสัมผัสการรับรู้ภาพ แสงที่มองเห็นได้ปกตินิยามว่ามีความยาวคลื่นอยู่ในช่วง 400–700 นาโนเมตร ระหวางอินฟราเรด (ที่มีความยาวคลื่นมากกว่าและมีคลื่นกว้างกว่านี้) และอัลตราไวโอเล็ต(ที่มีความยาวคลื่นน้อยกว่าและมีคลื่นแคบกว่านี้) ความยาวคลื่นนี้หมายถึงความถี่ช่วงประมาณ 430–750 เทระเฮิรตซ์
ดวงอาทิตย์เป็นแหล่งกำเนิดแสงหลักบนโลก แสงอาทิตย์ให้พลังงานซึ่งพืชสีเขียวใช้ผลิตน้ำตาลเป็นส่วนใหญ่ในรูปของแป้ง ซึ่งปลดปล่อยพลังงานแก่สิ่งมชีวิตที่ย่อยมัน กระบวนการสังเคราะห์ด้วยแสงนี้ให้พลังงานแทบทั้งหมดที่สิ่งมีชีวิตใช้ ในอดีต แหล่งสำคัญของแสงอีกแหล่งหนึ่งสำหรับมนุษย์คือไฟ ตั้งแต่แคมป์ไฟโบราณจนถึงตะเกียงเคโรซีนสมัยใหม่ ด้วยการพัฒนาหลอดไฟฟ้าและระบบพลังงาน การให้แสงสว่างด้วยไฟฟ้าได้แทนแสงไฟ สัตว์บางชนิดผลิตแสงไฟของมันเอง เป็นกระบวนการที่เรียก การเรืองแสงทางชีวภาพ
5 รังสีอัลตราไวโอเลต
มันได้ชื่อดังกล่าวเนื่องจากสเปกตรัมของมันประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูงกว่าคลื่นที่มนุษย์มองเห็นเป็นสีม่วง
6 รังสีเอกซ์
รังสีเอกซ์ (X-ray หรือ Röntgen ray) เป็นรังสีแม่เหล็กไฟฟ้า ที่มีความยาวคลื่นในช่วง 10 ถึง 0.01 นาโนเมตร ตรงกับความถี่ในช่วง 30 ถึง 30,000 เพตะเฮิรตซ์ (1015 เฮิรตซ์) ในเบื้องต้นมีการใช้รังสีเอกซ์สำหรับถ่ายภาพเพื่อการวินิจฉัยโรค และงานผลึกศาสตร์ (crystallography) รังสีเอกซ์เป็นการแผ่รังสีแบบแตกตัวเป็นไอออน และมีอันตรายต่อมนุษย์ รังสีเอกซ์ค้นพบโดยวิลเฮล์ม คอนราด เรินต์เกน เมื่อ ค.ศ. 1895
ทฤษฎีอิเล็กตรอนสมัยปัจจุบัน อธิบายถึงการเกิดรังสีเอกซ์ว่า ธาตุประกอบด้วยอะตอมจำนวนมากในอะตอมแต่ละตัวมีนิวเคลียสเป็นใจกลาง และมีอิเล็กตรอนวิ่งวนเป็นชั้น ๆ ธาตุเบาจะมีอิเล็กตรอนวิ่งวนอยู่น้อยชั้น และธาตุหนักจะมีอิเล็กตรอนวิ่งวนอยู่หลายชั้น เมื่ออะตอมธาตุหนักถูกยิงด้วยกระแสอิเล็กตรอน จะทำให้อิเล็กตรอนที่อยู่ชั้นในถูกชนกระเด็นออกมาวิ่งวนอยู่รอบนอกซึ่งมีภาวะไม่เสถียรและจะหลุดตกไปวิ่งวนอยู่ชั้นในอีก พร้อมกับปล่อยพลังงานออกในรูปรังสี ถ้าอิเล็กตรอนที่ยิงเข้าไปมีพลังงานมาก ก็จะเข้าไปชนอิเล็กตรอนในชั้นลึก ๆ ทำให้ได้รังสีที่มีพลังงานมาก เรียกว่า ฮาร์ดเอกซเรย์ (hard x-ray) ถ้าอิเล็กตรอนที่ใช้ยิงมีพลังงานน้อยเข้าไปได้ไม่ลึกนัก จะให้รังสีที่เรียกว่า ซอฟต์เอกซเรย์ (soft x-ray)
กระบวนการเกิดหรือการผลิตรังสีเอกซ์ทั้งโดยฝีมือมนุษย์และในธรรมชาติ มีอยู่ 2 วิธีใหญ่ ๆ คือ
- เป็นวิธีผลิตรังสีเอกซ์โดยการยิงลำอนุภาคอิเล็กตรอนใส่แผ่นโลหะ เช่น ทั้งสเตน อิเล็กตรอน ที่เป็นกระสุนจะวิงไปชนอิเล็กตรอนของอะตอมโลหะที่เป็นเป้า ทำให้อิเล็กตรอนที่ถูกชนเปลี่ยนตำแหน่ง การโคจรรอบนิวเคลียส เกิดตำแหน่งที่ว่างของอิเล็กตรอนในวงโคจรรอบนิวเคลียสเดิม อิเล็กตรอนตัวอื่นที่ อยู่ในตำแหน่งวงโคจรมีพลังงานสูงกว่า จะกระโดดเข้าไปแทนที่ของอิเล็กตรอนเดิมแล้วปล่อยพลังงานออก มาในรูปของคลื่นแม่เหล็กไฟฟ้าคือ รังสีเอกซ์
เครื่องฉายรังสีเอกซ์ที่ใช้งานกันทั่วไปในโรงพยาบาลและในโรงงานอุตสาหกรรม ล้วนเป็นเครื่องผลิต รังสีเอกซ์จากวิธีการนี้
- เป็นวิธีผลิต หรือ กำเนิดรังสีเอกซ์จากการเคลื่อนที่ของอนุภาคที่มีประจุไฟฟ้า เช่น อิเล็กตรอน โปรตอนหรืออะตอม อย่างมีความเร่ง คือ อนุภาคที่มีประจุไฟฟ้าเหล่านี้เคลื่อนที่ด้วยความเร็วสูงขึ้นแล้วก็เป็น ธรรมชาติของอนุภาคที่มีประจุไฟฟ้าเหล่านี้เอง ที่ต้องปล่อยพลังงานออกมาในรูปของ คลื่นแม่เหล็กไฟฟ้า อย่างที่ไม่มีอะไรไปห้ามได้ ซึ่งถ้าคลื่นแม่เหล็กไฟฟ้าที่ถูกปล่อยออกมามีความถี่สูงพอก็จะเป็นรังสีเอกซ์
กำเนิดรังสีเอกซ์วิธีนี้เป็นวิธีที่นักวิทยาศาสตร์ที่นิยมใช้ในการผลิตรังสีเอกซ์ในห้องทดลองวิทยาศาสตร์
7 รังสีแกมมา
รังสีแกมมา (อังกฤษ: Gamma radiation หรือ Gamma ray) มีสัญลักษณ์เป็นตัวอักษรกรีกว่า γ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่ง ที่มีช่วงความยาวคลื่นสั้นกว่ารังสีเอกซ์ (X-ray) โดยมีความยาวคลื่นอยู่ในช่วง 10-13 ถึง 10-17หรือคลื่นที่มีความยาวคลื่นน้อยกว่า 10-13 นั่นเอง รังสีแกมมามีความถี่สูงมาก ดังนั้นมันจึงประกอบด้วยโฟตอนพลังงานสูงหลายตัว รังสีแกมมาเป็นการแผ่รังสีแบบ ionization มันจึงมีอันตรายต่อชีวภาพ รังสีแกมมาถือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีพลังงานสูงที่สุดในบรรดาคลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆ ที่เหลือทั้งหมด การสลายให้รังสีแกมมาเป็นการสลายของนิวเคลียสของอะตอมในขณะที่มีการเปลี่ยนสถานะจากสถานะพลังงานสูงไปเป็นสถานะที่ต่ำกว่า แต่ก็อาจเกิดจากกระบวนการอื่น
แหล่งที่มา:https://th.wikipedia.org

ความคิดเห็น
แสดงความคิดเห็น